Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 355
Filter
1.
Nat Commun ; 15(1): 3804, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714648

ABSTRACT

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Disease Models, Animal , Phenylketonurias , Propionic Acidemia , RNA, Messenger , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/drug therapy , Animals , Phenylketonurias/genetics , Phenylketonurias/drug therapy , Phenylketonurias/therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Mice , Humans , Male , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Liposomes
3.
Nature ; 628(8009): 872-877, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570682

ABSTRACT

Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or ß (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.


Subject(s)
Propionic Acidemia , Propionyl-Coenzyme A Carboxylase , RNA, Messenger , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Administration, Intravenous , Dose-Response Relationship, Drug , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionyl-Coenzyme A Carboxylase/genetics , Propionyl-Coenzyme A Carboxylase/metabolism , RNA, Messenger/administration & dosage , RNA, Messenger/adverse effects , RNA, Messenger/genetics , RNA, Messenger/therapeutic use
4.
Stem Cell Res ; 76: 103352, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394970

ABSTRACT

In this study, peripheral blood mononuclear cells were contributed from a male infant with propionic acidemia (PA) verified by clinical and genetic diagnosis, who inherited compound heterozygous mutations in the propionyl-CoA carboxylase subunit beta (PCCB) gene. Here, this iPS was generated by non-integrated episomal vectors with SOX2, BCL-XL, OCT4, C-MYC and OCT4. Also, this iPSC line exhibited the morphology of pluripotent stem cells, upward mRNA and protein expression of pluripotency markers, conspicuous in vitro differentiation potency and regular karyotype, and carried PCCB gene mutations, which provided an excellent model for the research and drug screening of PA.


Subject(s)
Induced Pluripotent Stem Cells , Propionic Acidemia , Infant , Humans , Male , Propionic Acidemia/genetics , Induced Pluripotent Stem Cells/metabolism , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Heterozygote , Leukocytes, Mononuclear/metabolism , Mutation/genetics
5.
Drugs R D ; 24(1): 69-80, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38198106

ABSTRACT

BACKGROUND AND OBJECTIVE: Methylmalonic aciduria (MMA) and propionic aciduria (PA) are organic acidurias characterised by the accumulation of toxic metabolites and hyperammonaemia related to secondary N-acetylglutamate deficiency. Carglumic acid, a synthetic analogue of N-acetylglutamate, decreases ammonia levels by restoring the functioning of the urea cycle. However, there are limited data available on the long-term safety and effectiveness of carglumic acid. Here, we present an interim analysis of the ongoing, long-term, prospective, observational PROTECT study (NCT04176523), which is investigating the long-term use of carglumic acid in children and adults with MMA and PA. METHODS: Individuals with MMA or PA from France, Germany, Italy, Norway, Spain, Sweden and the UK who have received at least 1 year of carglumic acid treatment as part of their usual care are eligible for inclusion. The primary objective is the number and duration of acute metabolic decompensation events with hyperammonaemia (ammonia level >159 µmol/L during a patient's first month of life or >60 µmol/L thereafter, with an increased lactate level [> 1.8 mmol/L] and/or acidosis [pH < 7.35]) before and after treatment with carglumic acid. Peak plasma ammonia levels during the last decompensation event before and the first decompensation event after carglumic acid initiation, and the annualised rate of decompensation events before and after treatment initiation are also being assessed. Secondary objectives include the duration of hospital stay associated with decompensation events. Data are being collected at approximately 12 months' and 18 months' follow-up. RESULTS: Of the patients currently enrolled in the PROTECT study, data from ten available patients with MMA (n = 4) and PA (n = 6) were analysed. The patients had received carglumic acid for 14-77 (mean 36) months. Carglumic acid reduced the median peak ammonia level of the total patient population from 250 µmol/L (range 97-2569) before treatment to 103 µmol/L (range 97-171) after treatment. The annualised rate of acute metabolic decompensations with hyperammonaemia was reduced by a median of - 41% (range - 100% to + 60%) after treatment with carglumic acid. Of the five patients who experienced a decompensation event before treatment and for whom a post-treatment rate could be calculated, the annualised decompensation event rate was lower after carglumic acid treatment in four patients. The mean duration of hospital inpatient stay during decompensation events was shorter after than before carglumic acid treatment initiation in four of five patients for whom length of stay could be calculated. CONCLUSIONS: In this group of patients with MMA and PA, treatment with carglumic acid for at least 1 year reduced peak plasma ammonia levels in the total patient population and reduced the frequency of metabolic decompensation events, as well as the duration of inpatient stay due to metabolic decompensations in a subset of patients. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT04176523. Registered 25 November, 2019, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04176523 .


Subject(s)
Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Humans , Propionic Acidemia/drug therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Adult , Prospective Studies , Female , Male , Child , Child, Preschool , Adolescent , Glutamates/therapeutic use , Infant , Hyperammonemia/drug therapy , Young Adult , Middle Aged , Ammonia/blood
6.
J Inherit Metab Dis ; 47(1): 63-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37530705

ABSTRACT

Organic acidemias (OA) are a group of rare autosomal recessive disorders of intermediary metabolism that result in a systemic elevation of organic acid. Despite optimal dietary and cofactor therapy, OA patients still suffer from potentially lethal metabolic instability and experience long-term multisystemic complications. Severely affected patients can benefit from elective liver transplantation, which restores hepatic enzymatic activity, improves metabolic stability, and provides the theoretical basis for the pursuit of gene therapy as a new treatment for patients. Because of the poor outcomes reported in those with OA, especially methylmalonic and propionic acidemia, multiple gene therapy approaches have been explored in relevant animal models. Here, we review the results of gene therapy experiments performed using MMA and PA mouse models to illustrate experimental paradigms that could be applicable for all forms of OA.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Liver Transplantation , Propionic Acidemia , Animals , Mice , Humans , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/complications , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/complications , Liver Transplantation/adverse effects , Genetic Therapy , Disease Models, Animal , Methylmalonic Acid
7.
Mol Genet Metab ; 141(1): 108117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134582

ABSTRACT

OBJECTIVES: The MetabQoL 1.0 is the first disease-specific health related quality of life (HrQoL) questionnaire for patients with intoxication-type inherited metabolic disorders. Our aim was to assess the validity and reliability of the MetabQoL 1.0, and to investigate neuropsychiatric burden in our patient population. METHODS: Data from 29 patients followed at a single center, aged between 8 and 18 years with the diagnosis of methylmalonic acidemia (MMA), propionic acidemia (PA) or isovaleric acidemia (IVA), and their parents were included. The Pediatric Quality of Life Inventory (PedsQoL) was used to evaluate the validity and reliability of MetabQoL 1.0. RESULTS: The MetabQoL 1.0 was shown to be valid and reliable (Cronbach's alpha: 0.64-0.9). Fourteen out of the 22 patients (63.6%) formally evaluated had neurological findings. Of note, 17 out of 20 patients (85%) had a psychiatric disorder when evaluated formally by a child and adolescent psychiatrist. The median mental scores of the MetabQoL 1.0 proxy report were significantly higher than those of the self report (p = 0.023). Patients with neonatal-onset disease had higher MetabQoL 1.0 proxy physical (p = 0.008), mental (p = 0.042), total scores (p = 0.022); and self report social (p = 0.007) and total scores (p = 0.043) than those with later onset disease. CONCLUSIONS: This study continues to prove that the MetabQoL 1.0 is an effective tool to measure what matters in intoxication-type inherited metabolic disorders. Our results highlight the importance of clinical assessment complemented by patient reported outcomes which further expands the evaluation toolbox of inherited metabolic diseases.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Child , Infant, Newborn , Adolescent , Humans , Propionic Acidemia/diagnosis , Quality of Life/psychology , Turkey , Reproducibility of Results , Amino Acid Metabolism, Inborn Errors/diagnosis , Surveys and Questionnaires
8.
Gene ; 893: 147902, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37839763

ABSTRACT

Next-generation sequencing has improved the diagnosis of inborn errors of metabolism, allowing rapid confirmation of cases detected by clinical/biochemical studies or newborn screening. The challenge, however, remains for establishing the pathogenicity of the identified variants, especially for novel missense changes or small in-frame deletions. In this work we report a propionic acidemia patient exhibiting a severe neonatal form with coma and hyperammonaemia. Genetic analysis identified the previously described pathogenic PCCB variant p.R512C in the maternal allele and two novel PCCB variants in cis in the paternal allele, p.G246del and p.S322F. Expression analysis in a eukaryotic system confirmed the deleterious effect of the novel missense variant and of the one amino acid deletion, as they both exhibited reduced protein levels and reduced or null PCC activity compared to the wild-type construct. Accordingly, the double mutant resulted in no residual activity. This study increases the knowledge of the genotype-phenotype correlations in the rare disease propionic acidemia and highlights the necessity of functional analysis of novel variants to understand their contribution to disease severity and to accurately classify their pathogenic status. In conclusion, two novel PCCB pathogenic variants have been identified, expanding the current mutational spectrum of propionic acidemia.


Subject(s)
Carbon-Carbon Lyases , Propionic Acidemia , Humans , Infant, Newborn , Carbon-Carbon Lyases/genetics , Mutation, Missense , Propionic Acidemia/genetics , Sequence Deletion
9.
Eur J Pediatr ; 182(12): 5447-5453, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37773296

ABSTRACT

Hyporeninemic hypoaldosteronism has been reported in only a few cases with methylmalonic acidemia (MMA) and has been attributed to the renal involvement. This study aims to investigate renin-aldosterone levels along with the renal functions of the patients with organic acidemia. This is a cross-sectional study conducted in patients with MMA, propionic acidemia (PA), and isovaleric acidemia (IVA). Serum renin, aldosterone, sodium, and potassium levels were measured, and glomerular filtration rates (GFR) were calculated. Comparisons were made between the MMA and non-MMA (PA+IVA) groups. Thirty-two patients (MMA:PA:IVA = 14:13:5) were included. The median GFR was significantly lower in the MMA group than in the non-MMA group (p < 0.001). MMA patients had the highest incidence of kidney damage (71.4%), followed by PA patients (23%), while none of the IVA patients had reduced GFR. GFR positively correlated with renin levels (p = 0.015, r = 0.433). Although renin levels were significantly lower in the MMA group than the non-MMA group (p = 0.026), no significant difference in aldosterone levels was found between the two groups. Hyporeninemic hypoaldosteronism was found in 3 patients with MMA who had different stages of kidney damage, and fludrocortisone was initiated, which normalized serum sodium and potassium levels.  Conclusions: This study, which has the largest number of patients among the studies investigating the renin-angiotensin system in organic acidemias to date, has demonstrated that hyporeninemic hypoaldosteronism is not a rare entity in the etiology of hyperkalemia in patients with MMA, and the use of fludrocortisone is an effective treatment of choice in selected cases. What is Known: • Hyperkalemia may be observed in cases of methylmalonic acidemia due to renal involvement and can be particularly prominent during metabolic decompensation. • Hyporeninemic hypoaldosteronism has been reported to be associated with hyperkalemia in only a few cases of methylmalonic acidemia. What is New: • Hyporeninemic hypoaldosteronism was found in one-fifth of cases with methylmalonic acidemia. • Fludrocortisone therapy leads to the normalization of serum sodium and potassium levels.


Subject(s)
Hyperkalemia , Hypoaldosteronism , Propionic Acidemia , Child , Humans , Renin/therapeutic use , Aldosterone/therapeutic use , Fludrocortisone/therapeutic use , Hyperkalemia/etiology , Hyperkalemia/drug therapy , Hyperkalemia/metabolism , Hypoaldosteronism/complications , Hypoaldosteronism/drug therapy , Propionic Acidemia/complications , Propionic Acidemia/drug therapy , Cross-Sectional Studies , Sodium , Potassium
10.
Mol Genet Metab ; 140(3): 107702, 2023 11.
Article in English | MEDLINE | ID: mdl-37776842

ABSTRACT

Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by variants in PCCA or PCCB, both sub-units of the propionyl-CoA carboxylase (PCC) enzyme. PCC is required for the catabolism of certain amino acids and odd-chain fatty acids. In its absence, the accumulated toxic metabolites cause metabolic acidosis, neurologic symptoms, multi-organ dysfunction and possible death. The clinical presentation of PA is highly variable, with typical onset in the neonatal or early infantile period. We encountered two families, whose children were diagnosed with PA. Exome sequencing (ES) failed to identify a pathogenic variant, and we proceeded with genome sequencing (GS), demonstrating homozygosity to a deep intronic PCCB variant. RNA analysis established that this variant creates a pseudoexon with a premature stop codon. The parents are variant carriers, though three of them display pseudo-homozygosity due to a common large benign intronic deletion on the second allele. The parental presumed homozygosity merits special attention, as it masked the causative variant at first, which was resolved only by RNA studies. Arriving at a rapid diagnosis, whether biochemical or genetic, can be crucial in directing lifesaving care, concluding the diagnostic odyssey, and allowing the family prenatal testing in subsequent pregnancies. This study demonstrates the power of integrative genetic studies in reaching a diagnosis, utilizing GS and RNA analysis to overcome ES limitations and define pathogenicity. Importantly, it highlights that intronic deletions should be taken into consideration when analyzing genomic data, so that pseudo-homozygosity would not be misinterpreted as true homozygosity, and pathogenic variants will not be mislabeled as benign.


Subject(s)
Propionic Acidemia , Infant, Newborn , Child , Humans , Propionic Acidemia/genetics , RNA , Methylmalonyl-CoA Decarboxylase/genetics , Mutation , Codon, Nonsense
11.
Mol Genet Metab ; 140(3): 107695, 2023 11.
Article in English | MEDLINE | ID: mdl-37708666

ABSTRACT

BACKGROUND: Propionic acidemia (PA) is a rare autosomal recessive organic acidemia that classically presents within the first days of life with a metabolic crisis or via newborn screening and is confirmed with laboratory tests. Limited data exist on the natural history of patients with PA describing presentation, treatments, and clinical outcomes. OBJECTIVE: To retrospectively describe the natural history of patients with PA in a clinical setting from a real-world database using both structured and unstructured electronic health record (EHR) data using novel data extraction techniques in a unique care setting. DESIGN/METHODS: This retrospective study used EHR data to identify patients with PA seen at the Mayo Clinic. Unstructured clinical text (medical notes, pathology reports) were analyzed using augmented curation natural language processing models to enhance analysis of data extracted by structured data fields (International Classification of Diseases 9th or 10th revision [ICD-9/-10] codes, Current Procedural Terminology [CPT] codes, and medication orders). De-identified health records were also manually reviewed by clinical scientists to ensure data accuracy and completeness. The index date was defined as the patient's date of PA diagnosis at the Mayo Clinic. Results were reported as aggregate descriptive statistics relative to patients' index dates. Complications, therapeutic interventions, laboratory tests, procedures, and hospitalization encounters related to PA were described at and within 6 months of the patient's index date, and from medical history available before the index date. RESULTS: In total, 13 patients with PA were identified, with visits occurring from 1998 to 2022. Age at diagnosis ranged from birth to 3 years; age at initial evaluation at the Mayo Clinic ranged from 3 days to 28 years. The mean number of Mayo Clinic outpatient visits was 31 (median duration of care, 2 years). PA-related complications were documented in 85% of patients and included nutritional difficulties (46%), metabolic decompensation events (MDEs; 38%), neurologic abnormalities (38%), and cardiomyopathy (7%). One pair of affected siblings had mild symptoms and no complications or MDEs. All 5 patients with a history of MDEs presented with developmental delays. Among patients with MDEs, the mean frequency of outpatient clinical care visits was 10 per year, and 3 patients required inpatient hospitalization (mean duration, 16 days). The incidence of severe complications was higher among patients with MDEs than those without MDEs. Of the patients with MDEs, 2 experienced crises while receiving treatment at the Mayo Clinic, with 9 total MDEs occurring between the 2 patients. Symptoms at presentation included hyperammonemia (78%), fever and/or decreased nutritional intake (67%), hyperglycemia/hypoglycemia (56%), intercurrent upper respiratory infection and/or lethargy (44%), constipation (33%), altered mental status (33%), and cough (33%). CONCLUSIONS: This study highlights the range and frequency of clinical outcomes experienced by patients with PA and demonstrates the clinical burden of MDEs.


Subject(s)
Propionic Acidemia , Infant, Newborn , Humans , Child, Preschool , Propionic Acidemia/complications , Propionic Acidemia/diagnosis , Propionic Acidemia/epidemiology , Retrospective Studies , Electronic Health Records , Natural Language Processing , Neonatal Screening/methods
12.
Orphanet J Rare Dis ; 18(1): 281, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689673

ABSTRACT

Propionic acidemia (PA) is a rare autosomal recessive congenital disease caused by mutations in the PCCA or PCCB genes. Elevated propionylcarnitine, 2-methylcitric acid (2MCA), propionylglycine, glycine and 3-hydroxypropionate can be used to diagnose PA. Early-onset PA can lead to acute deterioration, metabolic acidosis, and hyperammonemia shortly after birth, which can result in high mortality and disability. Late-onset cases of PA have a more heterogeneous clinical spectra, including growth retardation, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, arrhythmias, adaptive immune defects, rhabdomyolysis, optic atrophy, hearing loss, premature ovarian failure, and chronic kidney disease. Timely and accurate diagnosis and appropriate treatment are crucial to saving patients' lives and improving their prognosis. Recently, the number of reported PA cases in China has increased due to advanced diagnostic techniques and increased research attention. However, an overview of PA prevalence in China is lacking. Therefore, this review provides an overview of recent advances in the pathogenesis, diagnostic strategies, and treatment of PA, including epidemiological data on PA in China. The most frequent variants among Chinese PA patients are c.2002G > A in PCCA and c.1301C > T in PCCB, which are often associated with severe clinical symptoms. At present, liver transplantation from a living (heterozygous parental) donor is a better option for treating PA in China, especially for those exhibiting a severe metabolic phenotype and/or end-organ dysfunction. However, a comprehensive risk-benefit analysis should be conducted as an integral part of the decision-making process. This review will provide valuable information for the medical care of Chinese patients with PA.


Subject(s)
Pancreatitis , Propionic Acidemia , Humans , Propionic Acidemia/diagnosis , Propionic Acidemia/epidemiology , Propionic Acidemia/genetics , Prevalence , China/epidemiology , Seizures
13.
Pediatr Transplant ; 27(8): e14603, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37658594

ABSTRACT

BACKGROUND: Domino liver transplant (DLT) represents another type of liver donor to expand the donor pool. Recent reports of successful DLT in children with maple syrup urine disease (MSUD) show promising long-term outcomes. METHODS: It was a retrospective study. All children with MSUD were paired with either recipients with end-stage liver disease (ESLD) or non-MSUD metabolic disease. Each pair underwent simultaneous liver transplant (LT), where the MSUD recipient received the graft from a living-related donor and the liver explanted from the MSUD donor was transplanted to the respective paired domino recipient. We report our experience regarding the techniques and outcomes of DLT at our center. RESULTS: Eleven children with MSUD and 12 respective DLT recipients were enrolled, one of which was domino split-liver transplantation. DLT recipients included seven ESLD, two propionic acidemia (PA), one glycogen storage disease(GSD) type-1, one GSD type-3, and one Citrullinemia. Post-LT ICU and hospital stays were comparable (p > .05). Patient and graft survival was 100% and 66.6% in the MSUD group and DLT recipients at a mean follow-up of 13.5 and 15 months. There was no death in the MSUD group as compared to four in the DLT group. The amino acid levels rapidly normalized after the LT in the children with MSUD and they tolerated the normal unrestricted diet. No vascular, biliary, or graft-related complications were seen in the post-transplant period. No occurrence of MSUD was noted in DLT recipients. CONCLUSION: DLTs have excellent post-surgical outcomes. DLT should be strongly considered and adopted by transplant programs worldwide to circumvent organ shortage.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Maple Syrup Urine Disease , Propionic Acidemia , Humans , Child , Liver Transplantation/methods , Maple Syrup Urine Disease/surgery , Retrospective Studies , Living Donors , End Stage Liver Disease/surgery
14.
J Inherit Metab Dis ; 46(6): 1043-1062, 2023 11.
Article in English | MEDLINE | ID: mdl-37603033

ABSTRACT

Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.


Subject(s)
Metabolism, Inborn Errors , Propionic Acidemia , Humans , Infant, Newborn , Neonatal Screening/methods , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Tandem Mass Spectrometry/methods , Carnitine/metabolism
15.
Nutrients ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571294

ABSTRACT

Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.


Subject(s)
Homocystinuria , Propionic Acidemia , Vitamin B 12 Deficiency , Humans , Infant, Newborn , Homocystinuria/diagnosis , Prospective Studies , Neonatal Screening/methods , Pilot Projects , Vitamin B 12 , Vitamin B 12 Deficiency/diagnosis , Phenotype , Methylmalonic Acid/metabolism , Vitamins
16.
Pharmacol Ther ; 249: 108501, 2023 09.
Article in English | MEDLINE | ID: mdl-37482098

ABSTRACT

Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.


Subject(s)
Propionic Acidemia , Humans , Propionic Acidemia/complications , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Mutation , Energy Metabolism
17.
J Inherit Metab Dis ; 46(5): 931-942, 2023 09.
Article in English | MEDLINE | ID: mdl-37309295

ABSTRACT

Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Propionic Acidemia , Humans , Valine/genetics , Valine/metabolism , Acyl-CoA Dehydrogenase/metabolism , Isoleucine/metabolism , HEK293 Cells , Carnitine
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 892-895, 2023 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-37368397

ABSTRACT

Methylmalonic acidemia (MMA) is a series of rare inherited organic acid metabolic disorders with variable and nonspecific clinical manifestations, in particular neurological symptoms such as vomiting, lethargy, etc. Even with timely treatment, patients may still have various degrees of neurological complications and can even die. The prognosis is mainly related to the type of genetic variants, level of metabolites, newborn screening, onset of disease and early initiation of treatment. This article has reviewed the prognosis of patients with various types of MMA and factors that may affect it.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Infant, Newborn , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/complications , Prognosis , Mutation , Neonatal Screening
19.
Mol Genet Metab ; 139(3): 107612, 2023 07.
Article in English | MEDLINE | ID: mdl-37245378

ABSTRACT

Clinical trial development in rare diseases poses significant study design and methodology challenges, such as disease heterogeneity and appropriate patient selection, identification and selection of key endpoints, decisions on study duration, choice of control groups, selection of appropriate statistical analyses, and patient recruitment. Therapeutic development in organic acidemias (OAs) shares many challenges with other inborn errors of metabolism, such as incomplete understanding of natural history, heterogenous disease presentations, requirement for sensitive outcome measures and difficulties recruiting a small sample of participants. Here, we review strategies for the successful development of a clinical trial to evaluate treatment response in propionic and methylmalonic acidemias. Specifically, we discuss crucial decisions that may significantly impact success of the study, including patient selection, identification and selection of endpoints, determination of the study duration, consideration of control groups including natural history controls, and selection of appropriate statistical analyses. The significant challenges associated with designing a clinical trial in rare disease can sometimes be successfully met through strategic engagement with experts in the rare disease, seeking regulatory and biostatistical guidance, and early involvement of patients and families.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Humans , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Rare Diseases/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Research Design , Methylmalonic Acid
20.
Metabolomics ; 19(5): 49, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37131043

ABSTRACT

INTRODUCTION: Tandem mass spectrometry (TMS) has emerged an important screening tool for various metabolic disorders in newborns. However, there is inherent risk of false positive outcomes. Objective To establish analyte-specific cutoffs in TMS by integrating metabolomics and genomics data to avoid false positivity and false negativity and improve its clinical utility. METHODS: TMS was performed on 572 healthy and 3000 referred newborns. Urine organic acid analysis identified 23 types of inborn errors in 99 referred newborns. Whole exome sequencing was performed in 30 positive cases. The impact of physiological changes such as age, gender, and birthweight on various analytes was explored in healthy newborns. Machine learning tools were used to integrate demographic data with metabolomics and genomics data to establish disease-specific cut-offs; identify primary and secondary markers; build classification and regression trees (CART) for better differential diagnosis; for pathway modeling. RESULTS: This integration helped in differentiating B12 deficiency from methylmalonic acidemia (MMA) and propionic acidemia (Phi coefficient=0.93); differentiating transient tyrosinemia from tyrosinemia type 1 (Phi coefficient=1.00); getting clues about the possible molecular defect in MMA to initiate appropriate intervention (Phi coefficient=1.00); to link pathogenicity scores with metabolomics profile in tyrosinemia (r2=0.92). CART model helped in establishing differential diagnosis of urea cycle disorders (Phi coefficient=1.00). CONCLUSION: Calibrated cut-offs of different analytes in TMS and machine learning-based establishment of disease-specific thresholds of these markers through integrated OMICS have helped in improved differential diagnosis with significant reduction of the false positivity and false negativity rates.


Subject(s)
Propionic Acidemia , Tyrosinemias , Infant, Newborn , Humans , Neonatal Screening/methods , Metabolomics , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...